

Mong-Fan Wang

6916087

BTECH 451
Parallella Epiphany

ABSTRACT

This report is a summary of my progress in the fourth-year Bachelor of Technology project. I

am working with a senior engineer in Compucon New Zealand, attempting to further the

research and development on a relatively new technology named the Epiphany.

Parallel computing is a type of computation where there are many calculations carried out

simultaneously. Unlike traditional computing where one problem generally gets solved with

one processor, parallel computing takes the problem and divide them into smaller ones if

possible, and they get processed at the same time.

Epiphany is a coprocessor with extremely low power consumption, this allows for a very high

performance per watt when utilised in parallel computing. My project will verify the claims

of the emerging technology, while also attempt in developing some applications for it.

ACKNOWLEDGEMENT

I would like to thank Dr Sathiamoorthy Manoharan for allowing me the opportunity to work

with Compucon. I would also like to express my appreciation and gratitude for the Compucon

General Manager, TN Chan as well as the Senior Engineer, Dave Fielder and all the staff at

Compucon, for providing an extremely enjoyable work environment, assistance and

guidance during the year-long project.

TABLE OF CONTENTS
Abstract .. 1

Acknowledgement ... 1

Company .. 4

Project Brief ... 4

Purpose ... 4

People ... 4

Hardware & Background .. 5

Epiphany ... 5

Parallella ... 5

Epiphany Architecture .. 5

Threading .. 5

Threaded MPI ... 5

COPRTHR SDK ... 6

STDCL .. 6

Epiphany Layout ... 6

Device Setup .. 7

Parallella Setup ... 7

SD Card Formatting ... 7

Expanding Image ... 7

SSH Setup .. 8

COPRTHR Setup .. 9

Software ... 11

The Board ... 12

Programming ... 14

Hello World Example - Native ESDK .. 14

Dot Product Example - Native ESDK .. 17

xTemp .. 20

Epiphany BSP - Hello World - ESBP Library ... 21

Para-Para Example - OpenCL/MPI ... 24

Parallela Epiphany Workspace Creation .. 30

Epiphany Program Execution ... 31

Memory & Performance .. 32

COPRTHR ... 33

EBSP .. 33

Cross Compilation Environment .. 35

Discussion... 41

Conclusion .. 42

References ... 43

COMPANY

Compucon New Zealand is a wholly New Zealand owned company since April 2011, that

manufactures computer systems and has excellent reputation and quality in the reseller and

user communities.

Partnering with world class component manufacturers, Compucon offers high quality and

reliable computer system builds.

Compucon New Zealand also specialises in high performance parallel computing and this will

be the main focus of this project [1].

The company has had many University of Auckland students since 2002 completing projects

with them in the Bachelor of Technology program.

PROJECT BRIEF

PURPOSE
The aim of this project is to verify the claims of the Epiphany manufacturer and develop a

number of applications to drive this new technology. The programs will be coded in the C or

C++ language, as these are low level languages, they communicate with the chip much better

than a high-level language like Python.

PEOPLE
TN Chan is the General Manager of Compucon New Zealand, as well as the full supervisor of

this project. David Fielder is the Senior Engineer of the company who assists me and provides

hands-on guidance in the Compucon House one day a week.

HARDWARE & BACKGROUND

EPIPHANY
A co-processor manufactured by Adapteva, the particular model I am working with has 16

high performance RISC CPU cores, programmable with both C/C++ and OpenCL.

Advantages include very low wattage for power consumption and being very flexible in terms

of scalability.

PARALLELLA
The co-processor runs on the Parallella board which is a credit card sized board, includes a

Gigabit Ethernet connection, HDMI port and 1 GB of SDRAM [2].

EPIPHANY ARCHITECTURE
As the Epiphany is a co-processor, it cannot do everything that a normal CPU can. Instead, it

is a simplified processor that carries out specialised tasks. This is a disadvantage of the

Epiphany; however, it is also the advantage at the same time as being specific makes it much

more energy efficient than a standard CPU. Memory on the Epiphany uses little-endian.

Doubles are not supported.

THREADING
 Multi-Threading improving performance [3]

 CPU utilisation is better

 IO latency hiding

THREADED MPI
Threaded MPI is the go to architecture for the Parallella Epiphany. The fully divergent RISC

cores allow high performance with inter-core data movement and maximise data re-use [4].

Brown Deer Technology claims that the programming is very easy, performance is great and

the libraries are readily available. It is also only going to get easier as technology progresses.

Part of my project is also to verify the claims of Brown Deer.

The power efficiency of the Epiphany rivals many other processes in the market today and

threaded MPI works perfectly aligned with that goal.

COPRTHR SDK
This term stands for the CO-PRocessing THReads. It is a SDK that provides libraries and tools

for developers that are developing multi-core applications. It provides support for the

Parallella in OpenCL and STDCL for the Epiphany co-processor [5].

STDCL
This is a portable API for targeting compute offload accelerators and co-processors.

EPIPHANY LAYOUT

 [7]

DEVICE SETUP

PARALLELLA SETUP
The following hardware are required:

 Parallella Board

 4-Port Powered USB Hub

 8 GB Micro-SD Card with an Adapter

 Micro-USB to USB (Female) Cable

 Micro-HDMI to HDMI (Female) Cable

 Crossover Ethernet Cable [6]

The following software is required:

 https://www.parallella.org/create-sdcard/

o The Manufacturer has included 4 versions of the Ubuntu image:

 Desktop Headless

 Desktop with Display

 Kickstarter Headless

 Kickstarter with Display

For the board I am working with, I will be using both the Desktop Headless and with

Display.

SD CARD FORMATTING
The SD card houses the Operating System for the Parallella.

Use the SDFormatter to fully erase the SD card. Now use a Win32 Disk Imager program to

load the file containing the Parallella image onto the SD card. It may appear that there are

no files in the SD card from Windows Explorer, however, this is normal. Safely eject the SD

card and pop it into the Parallella.

EXPANDING IMAGE
This command shows that only a small portion of the SD Card is available for use:

df -h

By entering the following series of commands, the image will be expanded so that the entire

SD card’s storage size can be utilised correctly.

dmesg | grep "root"

root=/dev/mmcblk0p2

/dev/mmcblk0p2 is the root partition, expand this by entering:

fdisk /dev/mmcblk0

Enter ‘m’ for help. Delete partition 2 (root partition), then create a new partition 2. Enter ‘d’

followed by ‘2’ to delete the root partition. Then ‘n’ followed by ‘p’ and 2’’ to create a new

partition 2. For the first and last sector, select default. Enter ‘p’ to confirm and write it to disk

with ‘w’.

Machine is then rebooted with:

sudo shutdown -r now

After reboot, enter:

resize2fs /dev/mmcblk0p2

This ensures the resize.

SSH SETUP

WINDOWS

Microsoft Windows does not have built in SSH, this means PuTTY for Windows is used. It can

be downloaded from:

 http://www.putty.org/

LINUX

In Linux, SSH is built in the Terminal.

NETWORK CONNECTION

There are two ways to connect to the Parallella board. Finding the IP address assigned to the

machine, or assigning a static address to it.

DYNAMIC IP

Find the IP address of the Parallella board by using any sort of network tool that displays all

devices connected in a Local Area Network.

STATIC IP

The new headless image uses the following form for the file “/etc/network/interfaces”

interfaces(5) file used by ifup(8) and ifdown(8)

Include files from /etc/network/interfaces.d:

source-directory /etc/network/interfaces.d

It is better to not alter this. This allows the contents of the folder “/etc/network/interfaces.d”
to contain the files “eth0” and “lo”. The original “eth0” reads

auto eth0

iface eth0 inet dhcp

and should be altered to read (for the Compucon network environment)

 auto eth0

 iface eth0 inet static

 address 192.168.1.101

 netmask 255.255.255.0

 network 192.168.1.0

 broadcast 192.168.1.255

 gateway 192.168.1.254

COPRTHR SETUP
WINDOWS

Run the Windows installer from https://github.com/browndeer/coprthr (libstdcl-1.4.0-win7-

install.msi) and set the appropriate paths to use the headers and library.

LINUX

Pre-requistites:

 Linux Ubuntu

 libelf-0.8.13.tar.gz (www.mr511.de/software/libelf-0.8.13.tar.gz)

 libevent-2.0.18-stable.tar.gz (github.com/downloads/libevent/libevent/libevent-

2.0.18-stable.tar.gz)

 libconfig-1.4.8.tar.gz (www.hyperrealm.com/libconfig/libconfig-1.4.8.tar.gz)

 m4-1.4.16.tar.gz (http://ftp.gnu.org/gnu/m4/)

 flex-2.5.35.tar.gz (http://flex.sourceforge.net/)

 bison-2.5.tar.gz (http://ftp.gnu.org/gnu/bison/)

Pre-compiled Package:

 coprthr-1.5.0-rc2-parallella.tgz

The libraries are unpacked by entering the following commands:

./configure

sudo make install

Unpacking the file will produce a directory browndeer/.

https://github.com/browndeer/coprthr
http://www.mr511.de/software/libelf-0.8.13.tar.gz
http://www.hyperrealm.com/libconfig/libconfig-1.4.8.tar.gz
http://www.hyperrealm.com/libconfig/libconfig-1.4.8.tar.gz
http://www.hyperrealm.com/libconfig/libconfig-1.4.8.tar.gz
http://www.hyperrealm.com/libconfig/libconfig-1.4.8.tar.gz
http://ftp.gnu.org/gnu/m4/
http://flex.sourceforge.net/
http://ftp.gnu.org/gnu/bison/

Enter following commands to remove previous installations as well as installing the new

version:

sudo ./browndeer/uninstall_coprthr_parallella.sh

sudo ./browndeer/install_coprthr_parallella.sh

Finally, add the following environmental variables to PATH:

export PATH=/usr/local/browndeer/bin:$PATH

export

LD_LIBRARY_PATH=/usr/local/browndeer/lib:/usr/local/lib:$LD_L

IBRARY_PATH

SOFTWARE

The current version of the Parallella Epiphany runs on Linux Ubuntu 15.04, while I will be

mainly experimenting with the headless image, meaning no display is utilised. For me to get

any sort of feedback is to do the SSH setup I have mentioned earlier to connect to the device

and communicate through another computer on the same network. The reason that the

image with the HDMI output is not used is due to the fact that it is extremely outdated at

2014 and the latest ESDK and power saving features are not implemented due to challenges

with the FPGA HDMI integration.

THE BOARD

This is the parallella board with the Epiphany co-processor. The bottom left is the power input,

the top left is the Ethernet port and the two connections on the right are the USB and HDMI

connections.

As shown here, a fan must be used at all times to ensure the board and chip do not overheat.

PROGRAMMING

The Parallella uses a host/device structure, meaning every application needs a corresponding

program for each side.

While the programs are separate, all files are created and stored on the host (in this case the

ARM chip) Below are examples from the Parallella GitHub that I have first initially ran to test

for performance and get an idea on how programs are executed on the Parallella Epiphany.

HELLO WORLD EXAMPLE - NATIVE ESDK

DEVICE PROGRAM - E_HELLO_WORLD.C
#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include "e_lib.h"

int main(void) {

 const char ShmName[] = "hello_shm";

 const char Msg[] = "Hello World from core

0x%03x!";

 char buf[256] = { 0 };

 e_coreid_t coreid;

 e_memseg_t emem;

 unsigned my_row;

 unsigned my_col;

 coreid = e_get_coreid();

 e_coords_from_coreid(coreid, &my_row, &my_col);

 if (E_OK != e_shm_attach(&emem, ShmName)) {

 return EXIT_FAILURE;

 }

 snprintf(buf, sizeof(buf), Msg, coreid);

 if (emem.size >= strlen(buf) + 1) {

 e_write((void*)&emem, buf, my_row, my_col, NULL,

strlen(buf) + 1);

 } else {

 return EXIT_FAILURE;

 }

 return EXIT_SUCCESS;

}

HOST PROGRAM - HELLO_WORLD.C
#include <stdlib.h>

#include <stdio.h>

#include <string.h>

#include <errno.h>

#include <unistd.h>

#include <e-hal.h>

const unsigned ShmSize = 128;

const char ShmName[] = "hello_shm";

const unsigned SeqLen = 20;

int main(int argc, char *argv[])

{

 unsigned row, col, coreid, i;

 e_platform_t platform;

 e_epiphany_t dev;

 e_mem_t mbuf;

 int rc;

 srand(1);

 e_set_loader_verbosity(H_D0);

 e_set_host_verbosity(H_D0);

 e_init(NULL);

 e_reset_system();

 e_get_platform_info(&platform);

 rc = e_shm_alloc(&mbuf, ShmName, ShmSize);

 if (rc != E_OK)

 rc = e_shm_attach(&mbuf, ShmName);

 if (rc != E_OK) {

 fprintf(stderr, "Failed to allocate shared memory.

Error is %s\n",

 strerror(errno));

 return EXIT_FAILURE;

 }

 for (i=0; i<SeqLen; i++)

 {

 char buf[ShmSize];

 row = rand() % platform.rows;

 col = rand() % platform.cols;

 coreid = (row + platform.row) * 64 + col +

platform.col;

 printf("%3d: Message from eCore 0x%03x (%2d,%2d): ",

i, coreid, row, col);

 e_open(&dev, row, col, 1, 1);

 e_reset_group(&dev);

 if (E_OK != e_load("e_hello_world.elf", &dev, 0, 0,

E_TRUE)) {

 fprintf(stderr, "Failed to load

e_hello_world.elf\n");

 return EXIT_FAILURE;

 }

 usleep(10000);

 e_read(&mbuf, 0, 0, 0, buf, ShmSize);

 printf("\"%s\"\n", buf);

 e_close(&dev);

 }

 e_shm_release(ShmName);

 e_finalize();

 return 0;

}

DOT PRODUCT EXAMPLE - NATIVE ESDK

DEVICE PROGRAM - E_TASK.C
#include <stdio.h>

#include <stdlib.h>

#include "e-lib.h"

#include "common.h"

int main(void)

{

 unsigned *a, *b, *c, *d;

 int i;

 a = (unsigned *) 0x2000;//Address of a matrix

(transfered here by host)

 b = (unsigned *) 0x4000;//Address of b matrix

(transfered here by host)

 c = (unsigned *) 0x6000;//Result

 d = (unsigned *) 0x7000;//Done

 //Clear Sum

 (*(c))=0x0;

 //Sum of product calculation

 for (i=0; i<N/CORES; i++){

 (*(c)) += a[i] * b[i];

 }

 //Raising "done" flag

 (*(d)) = 0x00000001;

 //Put core in idle state

 __asm__ __volatile__("idle");

}

HOST PROGRAM - MAIN.C
#include <stdlib.h>

#include <stdio.h>

#include <e-hal.h>

#include "common.h"

#define RESULT 85344 //recognize /Sum_{i=0}^{n-1} i^2 =

\frac{N(N-1)(2N-1)}{6}

int main(int argc, char *argv[]){

 e_platform_t platform;

 e_epiphany_t dev;

 int a[N], b[N], c[CORES];

 int done[CORES],all_done;

 int sop;

 int i,j;

 int sections = N/CORES; //assumes N % CORES = 0

 unsigned clr = 0;

 //Calculation being done

 printf("Calculating sum of products of two integer vectors

of length %d initalized from (0..%d) using %d Cores.\n",N,N-

1,CORES);

 printf("........\n");

 //Initalize Epiphany device

 e_init(NULL);

 e_reset_system();

//reset Epiphany

 e_get_platform_info(&platform);

 e_open(&dev, 0, 0, platform.rows, platform.cols); //open

all cores

 //Initialize a/b input vectors on host side

 for (i=0; i<N; i++){

 a[i] = i;

 b[i] = i;

 }

 //Load program to cores

 e_load_group("e_task.elf", &dev, 0, 0, platform.rows,

platform.cols, E_FALSE);

 //1. Copy data (N/CORE points) from host to Epiphany local

memory

 //2. Clear the "done" flag for every core

 for (i=0; i<platform.rows; i++){

 for (j=0; j<platform.cols;j++){

 e_write(&dev, i, j, 0x2000,

&a[(i*platform.cols+j)*sections], sections*sizeof(int));

 e_write(&dev, i, j, 0x4000,

&b[(i*platform.cols+j)*sections], sections*sizeof(int));

 e_write(&dev, i, j, 0x7000, &clr, sizeof(clr));

 }

 }

 // start cores

 e_start_group(&dev);

 //Check if all cores are done

 while(1){

 all_done=0;

 for (i=0; i<platform.rows; i++){

 for (j=0; j<platform.cols;j++){

 e_read(&dev, i, j, 0x7000, &done[i*platform.cols+j],

sizeof(int));

 all_done+=done[i*platform.cols+j];

 }

 }

 if(all_done==CORES){

 break;

 }

 }

 //Copy all Epiphany results to host memory space

 for (i=0; i<platform.rows; i++){

 for (j=0; j<platform.cols;j++){

 e_read(&dev, i, j, 0x6000, &c[i*platform.cols+j],

sizeof(int));

 }

 }

 //Calculates final sum-of-product using Epiphany results as

inputs

 sop=0;

 for (i=0; i<CORES; i++){

 sop += c[i];

 }

 //Print out result

 printf("Sum of Product Is %d!\n",sop);

 //Close down Epiphany device

 e_close(&dev);

 e_finalize();

 if(sop==RESULT){

 return EXIT_SUCCESS;

 }

 else{

 return EXIT_FAILURE;

 }

}

XTEMP
The xTemp utility is a program under the Parallella Utility package, where the temperature

of the board can be visualised. With SSH access, X11 forwarding is needed to see the

graphical output on the remote connection.

EPIPHANY BSP - HELLO WORLD - ESBP LIBRARY

DEVICE PROGRAM - E_CORE_HELLO.C
#include <e_bsp.h>

int main()

{

 bsp_begin();

 int n = bsp_nprocs();

 int p = bsp_pid();

 ebsp_message("Hello world from core %d/%d", p, n);

 bsp_end();

 return 0;

}

HOST PROGRAM - HOST_HELLO.C
#include <host_bsp.h>

#include <stdio.h>

int main(int argc, char **argv)

{

 bsp_init("ecore_hello.srec", argc, argv);

 bsp_begin(bsp_nprocs());

 ebsp_spmd();

 bsp_end();

 return 0;

}

RUNNING MAKEFILE

PROGRAM OUTPUT

PARA-PARA EXAMPLE - OPENCL/MPI

OPENCL REQUIREMENTS
###Libelf prerequisite

wget www.mr511.de/software/libelf-0.8.13.tar.gz

tar -zxvf libelf-0.8.13.tar.gz

cd libelf-0.8.13

./configure

sudo make install

cd ../

###Libevent prerequisite

wget github.com/downloads/libevent/libevent/libevent-2.0.18-

stable.tar.gz

tar -zxvf libevent-2.0.18-stable.tar.gz

cd libevent-2.0.18-stable

./configure

sudo make install

cd ../

###Libconfig prerequisite

wget www.hyperrealm.com/libconfig/libconfig-1.4.8.tar.gz

tar -zxvf libconfig-1.4.8.tar.gz

cd libconfig-1.4.8

./configure

sudo make install

cd ../

###Install parallella opencl package

wget http://www.browndeertechnology.com/code/coprthr-1.6.0-

parallella.tgz

tar -zxvf coprthr-1.6.0-parallella.tgz

sudo ./browndeer/scripts/install_coprthr_parallella.sh

Add paths to .bashrc

echo 'export PATH=/usr/local/browndeer/bin:$PATH' >>

~/.bashrc

echo 'export

LD_LIBRARY_PATH=/usr/local/browndeer/lib:/usr/local/lib:$LD_L

IBRARY_PATH' >> ~/.bashrc

Add paths to root .bashrc

sudo su

echo 'export PATH=/usr/local/browndeer/bin:$PATH' >>

~/.bashrc

echo 'export

LD_LIBRARY_PATH=/usr/local/browndeer/lib:/usr/local/lib:$LD_L

IBRARY_PATH' >> ~/.bashrc

Add paths to .cshrc

echo 'setenv PATH /usr/local/bin:$PATH' >> ~/.cshrc

echo 'setenv LD_LIBRARY_PATH

/usr/local/browndeer/lib:/usr/local/lib:$LD_LIBRARY_PATH' >>

~/.cshrc

MPI REQUIREMENTS
wget http://www.open-

mpi.org/software/ompi/v1.8/downloads/openmpi-1.8.1.tar.gz

tar -zxvf openmpi-1.8.1.tar.gz

cd openmpi-1.8.1

./configure --prefix=/usr/local \

 --enable-mpirun-prefix-by-default \

 --enable-static

make all

sudo make install

OPENCL IMPLEMENTATION
#define DEVICE_TYPE CL_DEVICE_TYPE_ACCELERATOR

#include <stdlib.h>

#include <stdio.h>

#include <CL/cl.h>

int main()

{

 int i,j;

 int err;

 char buffer[256];

 unsigned int n = 1024;

 cl_uint nplatforms;

 cl_platform_id* platforms;

 cl_platform_id platform;

 //--

-

 //Discover and initialize the platform

 //--

-

 clGetPlatformIDs(0,0,&nplatforms);

 platforms =

(cl_platform_id*)malloc(nplatforms*sizeof(cl_platform_id));

 clGetPlatformIDs(nplatforms, platforms, 0);

 for(i=0; i<nplatforms; i++) {

 platform = platforms[i];

clGetPlatformInfo(platforms[i],CL_PLATFORM_NAME,256,buffer,0)

;

 if (!strcmp(buffer,"coprthr")) break;

 }

 if (i<nplatforms) platform = platforms[i];

 else exit(1);

 //--

-

 //Discover and initialize the devices

 //--

-

 cl_uint ndevices;

 cl_device_id* devices;

 cl_device_id dev;

 clGetDeviceIDs(platform,DEVICE_TYPE,0,0,&ndevices);

 devices =

(cl_device_id*)malloc(ndevices*sizeof(cl_device_id));

 clGetDeviceIDs(platform, DEVICE_TYPE,ndevices,devices,0);

 if (ndevices) dev = devices[0];

 else exit(1);

 //--

-

 //Create a context

 //--

-

 cl_context_properties ctxprop[3] = {

 (cl_context_properties)CL_CONTEXT_PLATFORM,

 (cl_context_properties)platform,

 (cl_context_properties)0

 };

 cl_context ctx = clCreateContext(ctxprop,1,&dev,0,0,&err);

 //--

-

 //Create a command queue

 //--

-

 cl_command_queue cmdq =

clCreateCommandQueue(ctx,dev,0,&err);

 //--

-

 //Allocate dynamic memory on the host

 //--

-

 size_t a_sz = n*n*sizeof(float);

 size_t b_sz = n*sizeof(float);

 size_t c_sz = n*sizeof(float);

 float* a = (float*)malloc(n*n*sizeof(float));

 float* b = (float*)malloc(n*sizeof(float));

 float* c = (float*)malloc(n*sizeof(float));

 for(i=0;i<n;i++) for(j=0;j<n;j++) a[i*n+j] = 1.1f*i*j;

 for(i=0;i<n;i++) b[i] = 2.2f*i;

 for(i=0;i<n;i++) c[i] = 0.0f;

 //--

-

 //Copy data to device buffer

 //--

-

 cl_mem a_buf =

clCreateBuffer(ctx,CL_MEM_USE_HOST_PTR,a_sz,a,&err);

 cl_mem b_buf =

clCreateBuffer(ctx,CL_MEM_USE_HOST_PTR,b_sz,b,&err);

 cl_mem c_buf =

clCreateBuffer(ctx,CL_MEM_USE_HOST_PTR,c_sz,c,&err);

 //--

-

 //The kernel

 //--

-

 const char kernel_code[] =

 "__kernel void matvecmult_kern(\n"

 " uint n,__global float* a,__global float* b,__global

float* c)\n"

 "{\n"

 " int i = get_global_id(0);\n"

 " int j;\n"

 " float tmp = 0.0f;\n"

 " for(j=0;j<n;j++) tmp += a[i*n+j] * b[j];\n"

 " c[i] = a[i*n+i];\n"

 "}\n";

 //--

-

 //Compiling the kernel

 //--

-

 const char* src[1] = { kernel_code };

 size_t src_sz = sizeof(kernel_code);

 cl_program prg = clCreateProgramWithSource(ctx,1,(const

char**)&src,

 &src_sz,&err);

 clBuildProgram(prg,1,&dev,0,0,0);

 cl_kernel krn =

clCreateKernel(prg,"matvecmult_kern",&err);

 //--

-

 //Set kernel arguments

 //--

-

 clSetKernelArg(krn,0,sizeof(cl_uint),&n);

 clSetKernelArg(krn,1,sizeof(cl_mem),&a_buf);

 clSetKernelArg(krn,2,sizeof(cl_mem),&b_buf);

 clSetKernelArg(krn,3,sizeof(cl_mem),&c_buf);

 //--

-

 //Queue up kernel for execution

 //--

-

 size_t gtdsz[] = { n };

 size_t ltdsz[] = { 16 };

 cl_event ev[10];

clEnqueueNDRangeKernel(cmdq,krn,1,0,gtdsz,ltdsz,0,0,&ev[0]);

 //--

-

 //Readb back result data

 //--

-

clEnqueueReadBuffer(cmdq,c_buf,CL_TRUE,0,c_sz,c,0,0,&ev[1]);

 err = clWaitForEvents(2,ev);

 //--

-

 //Print result

 //--

-

 for(i=0;i<n;i++) printf("c[%d] %f\n",i,c[i]);

 //--

-

 //Release OpenCL resources

 //--

-

 clReleaseEvent(ev[1]);

 clReleaseEvent(ev[0]);

 clReleaseKernel(krn);

 clReleaseProgram(prg);

 clReleaseMemObject(a_buf);

 clReleaseMemObject(b_buf);

 clReleaseMemObject(c_buf);

 clReleaseCommandQueue(cmdq);

 clReleaseContext(ctx);

 //--

-

 //Free host resources

 //--

-

 free(a);

 free(b);

 free(c);

}

MPI IMPLEMENTATION
#include <stdio.h>

#include <mpi.h>

int main(int argc, char *argv[]) {

 int numprocs, rank, namelen;

 char processor_name[MPI_MAX_PROCESSOR_NAME];

 MPI_Init(&argc, &argv);

 MPI_Comm_size(MPI_COMM_WORLD, &numprocs);

 MPI_Comm_rank(MPI_COMM_WORLD, &rank);

 MPI_Get_processor_name(processor_name, &namelen);

 printf("Hello World from MPI Process %d on machine %s\n",

rank, processor_name);

 MPI_Finalize();

}

[8]

Using this example, I am able to see how the device handles OpenCL and MPI differently.

PARALLELA EPIPHANY WORKSPACE CREATION
The following commands in the Terminal or PuTTY SSH connection will allow the workspace

creation. This will allow for easier programming on the Epiphany.

cd ~/Downloads

wget

ftp://ftp.parallella.org/esdk/old/esdk.5.13.07.10_linux_x86_6

4_armv7l.tgz

sudo mkdir -p /opt/adapteva

sudo mv esdk.5.13.07.10_linux_x86_64_armv7l.tgz /opt/adapteva

cd /opt/adapteva

sudo tar xvf esdk.5.13.07.10_linux_x86_64_armv7l.tgz

sudo ln -sTf esdk.5.13.07.10 /opt/adapteva/esdk

sudo apt-get install libmpfr-dev libgmp3-dev libmpc-dev

openjdk-6-jre tcsh csh g++ -y

sudo nano /etc/environment

PATH=”/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin

:/bin:/usr/games:/usr/local/games:/opt/adapteva/esdk/tools/e-

gnu/bin”

EPIPHANY_HOME=”/opt/adapteva/esdk”

LD_LIBRARY_PATH=”/usr/lib:/usr/lib/x86_64-linux-gnu”

cd /usr/lib/x86_64-linux-gnu

sudo cp libmpc.so libmpc.so.2

sudo ldconfig

sudo cp libmpfr.so libmpfr.so.1

sudo cp libgmp.so libgmp.so.3

sudo nano /opt/adapteva/esdk/tools/host/bin/echo-process

Save empty file

sudo chmod 777 /opt/adapteva/esdk/tools/host/bin/echo-process

e-eclipse

Create a workspace and name the project. Since the Epiphany is 16 core in this case, we must

have the settings of:

Number of rows = 4

Number of columns = 4

Row number in first core = 32

Column number of first core = 8

This creates a master project for all projects that will be created.

To program the Epiphany, we now change the host name to the Epiphany IP address or host

name in our network. The ‘stop at main’ checkbox should be unticked and both ‘Resume’ and

‘Verbose mode’ should be ticked.

The final step is to right click the first core project and complete the following:

C/C++ Build → Settings → Epiphany Linker → Linker Description File

Change Select LDF to: ${EPIPHANY_HOME}/bsps/current/legacy.ldf

In the Epiphany Linker, add e-lib to the libraries, then apply these settings to all of the

projects. A dialog should pop up showing success messages if completed correctly.

EPIPHANY PROGRAM EXECUTION

Type e-server in the Terminal.

The Epiphany listens on the port 51000 by default.

MEMORY & PERFORMANCE

To run tests on the Epiphany, we must first understand how the device works. The Epiphany

has 16 cores, and each of them has a separate DMA Engine. This stands for Direct Memory

Access, and is responsible for transferring data between the Epiphany cores. Two DMA

channels are present; this means that two pairs of addresses (source and destination) can be

set while the CPU continues to work on other tasks. The addresses are also not limited to their

own internal memory; it can be any other core within the Epiphany.

Message passing between the cores are different in the Epiphany compared to standard

processors. The Epiphany utilises a message queue. This eliminates the need of registering

variables. The Epiphany cores have very little local memory but they are fast. Bigger external

memory is present but they come at a speed cost.

 local memory: 32 KB for each core

 external memory: 32 MB shared for all cores [10]

A couple of memory transfer tests were done to benchmark the Epiphany memory speed,

here are the results:

 Host to Internal Memory

o Write speed - 14.12 MBps

o Read speed - 16.95 MBps

 Host to External Memory

o Write speed - 99.52 MBps

o Read speed - 120.13 MBps

 Using memcpy

o Core to Internal Memory

 Write speed - 487.59 MBps

 Read speed - 114.85 MBps

o Core to External Memory

 Write speed - 139.02 MBps

 Read speed - 4.15 MBps

 Using DMA:

o Core to Internal Memory

 Write speed - 1938.79 MBps

 Read speed - 478.52 MBps

o Core to External Memory

 Write speed - 469.25 MBps

 Read speed - 151.54 MBps

The transfers to internal memory utilises a single cycle for read and write, however, if the

destination and source are on different Epiphany cores, latency increases as the data hops

from core to core in the mesh network. The external memory latency is affected by a

multitude of variables, including the mesh latency, speed of the RAM as well as the speed of

the interface between the FPGA chip on board of the Parallella and the Epiphany.

COPRTHR

Running a vector multiplication tool on the Epiphany is done by allocating each of the vectors

to the co-processor memory. Each co-processor then computes the vector that it has been

assigned and multiplies each element with the corresponding element in another vector. The

result is then set to another vector.

Using the COPRTHR SDK and comparing the performance between the cores of the Epiphany

and the main ARM processor on board, the result is that the Epiphany cores working together,

handled the tool about three times slower than the ARM processor.

As the COPRTHR SDK is based on the OpenCL framework, there seems to be an unnatural fit

between the framework and the hardware, resulting in this poor performance.

EBSP

BSP stands for Bulk Synchronous Parallel, while EBSP is a specialised version developed

specifically for the Epiphany, hence the name Epiphany BSP. It is a model where the

algorithms use computations that are non-blocking and then a synchronisation even occurs

at the end to ensure that all data communications execute in the correct way.

The company that developed EBSP is CODUIN, and they are based in the Netherlands which

focuses on software libraries development for multicore embedded systems.

The BSP model was developed in the 1980s, and thee important requirements had to be

followed:

 It has n processors capable of computation and communication, i.e. it allows for

local memory transactions.

 It has a network in place that allows the different processors to send and receive

data.

 It has a mechanism that allows for the synchronisation of these processors, e.g. by

means of a blocking barrier.

Consider the EBSP Hello World example again, notice the processor id is out of order here as

there is no set logic on which core gets and processes the message first. This is a proof that

the program is running in parallel instead of serial. Using the write and read methods of EBSP,

we can get better control over how we want to address the memory of each core.

CROSS COMPILATION ENVIRONMENT

To make developing and running applications on the Parallella Epiphany smoother and easier,

a cross compilation environment can be setup. The following packages are installed:

build-essential git bison flex libgmp3-dev libncurses-dev

libmpc-dev libmpfr-dev texinfo xzip lzip zip

The ARM/Linux cross-toolchain is installed from the below packages:

gcc-arm-linux-gnueabihf g++-arm-linux-gnueabihf

The following packages were then installed in the log order:

Commit Log for Wed Jul 20 18:46:28 2016

Installed the following packages:(Not a prerequisite but very

necessary)

gedit (3.10.4-0ubuntu4)gedit-common (3.10.4-0ubuntu4)

gir1.2-gtksource-3.0 (3.10.2-0ubuntu1)

gir1.2-peas-1.0 (1.8.1-2ubuntu2)

gnome-user-guide (3.8.2-1)

libgtksourceview-3.0-1 (3.10.2-0ubuntu1)

libgtksourceview-3.0-common (3.10.2-0ubuntu1)

libpeas-1.0-0 (1.8.1-2ubuntu2)

libpeas-common (1.8.1-2ubuntu2)

libpython3.4 (3.4.3-1ubuntu1~14.04.3)

libyelp0 (3.10.2-0ubuntu1)

libzeitgeist-2.0-0 (0.9.14-0ubuntu4.1)

python-gi-cairo (3.12.0-1ubuntu1)

python-zeitgeist (0.9.14-0ubuntu4.1)

yelp (3.10.2-0ubuntu1)

yelp-xsl (3.10.1-1)

zeitgeist (0.9.14-0ubuntu4.1)

zeitgeist-core (0.9.14-0ubuntu4.1)

zeitgeist-datahub (0.9.14-0ubuntu4.1)

Commit Log for Wed Jul 20 18:49:14 2016

Installed the following packages:

binutils (2.24-5ubuntu14.1)

build-essential (11.6ubuntu6)

dpkg-dev (1.17.5ubuntu5.7)

fakeroot (1.20-3ubuntu2)

g++ (4:4.8.2-1ubuntu6)

g++-4.8 (4.8.4-2ubuntu1~14.04.3)

gcc (4:4.8.2-1ubuntu6)

gcc-4.8 (4.8.4-2ubuntu1~14.04.3)

libalgorithm-diff-perl (1.19.02-3)

libalgorithm-diff-xs-perl (0.04-2build4)

libalgorithm-merge-perl (0.08-2)

libasan0 (4.8.4-2ubuntu1~14.04.3)

libatomic1 (4.8.4-2ubuntu1~14.04.3)

libc-dev-bin (2.19-0ubuntu6.9)

libc6-dev (2.19-0ubuntu6.9)

libdpkg-perl (1.17.5ubuntu5.7)

libfakeroot (1.20-3ubuntu2)

libfile-fcntllock-perl (0.14-2build1)

libgcc-4.8-dev (4.8.4-2ubuntu1~14.04.3)

libitm1 (4.8.4-2ubuntu1~14.04.3)

libstdc++-4.8-dev (4.8.4-2ubuntu1~14.04.3)

libtsan0 (4.8.4-2ubuntu1~14.04.3)

linux-libc-dev (3.13.0-92.139)

make (3.81-8.2ubuntu3)

manpages-dev (3.54-1ubuntu1)

Commit Log for Wed Jul 20 18:50:05 2016

Installed the following packages:

git (1:1.9.1-1ubuntu0.3)

git-man (1:1.9.1-1ubuntu0.3)

liberror-perl (0.17-1.1)

Commit Log for Wed Jul 20 18:50:43 2016

Installed the following packages:

bison (2:3.0.2.dfsg-2)

libbison-dev (2:3.0.2.dfsg-2)

libsigsegv2 (2.10-2)

m4 (1.4.17-2ubuntu1)

Commit Log for Wed Jul 20 18:51:23 2016

Installed the following packages:

flex (2.5.35-10.1ubuntu2)

libfl-dev (2.5.35-10.1ubuntu2)

Commit Log for Wed Jul 20 18:52:11 2016

Installed the following packages:

libgmp-dev (2:5.1.3+dfsg-1ubuntu1)

libgmp3-dev (2:5.1.3+dfsg-1ubuntu1)

libgmpxx4ldbl (2:5.1.3+dfsg-1ubuntu1)

Commit Log for Wed Jul 20 18:53:26 2016

Installed the following packages:

libncurses5-dev (5.9+20140118-1ubuntu1)

libtinfo-dev (5.9+20140118-1ubuntu1)

Commit Log for Wed Jul 20 18:54:55 2016

Installed the following packages:

libmpc-dev (1.0.1-1ubuntu1)

libmpfr-dev (3.1.2-1)

Commit Log for Wed Jul 20 18:55:40 2016

Installed the following packages:

libintl-perl (1.23-1build1)

libtext-unidecode-perl (0.04-2)

libxml-libxml-perl (2.0108+dfsg-1ubuntu0.1)

libxml-namespacesupport-perl (1.11-1)

libxml-sax-base-perl (1.07-1)

libxml-sax-expat-perl (0.40-2)

libxml-sax-perl (0.99+dfsg-2ubuntu1)

texinfo (5.2.0.dfsg.1-2)

Commit Log for Wed Jul 20 18:58:00 2016

Installed the following packages:

xzip (1:1.8.2-3)

Commit Log for Wed Jul 20 18:58:29 2016

Installed the following packages:

lzip (1.14-2)

Commit Log for Wed Jul 20 18:59:59 2016

Installed the following packages:

binutils-arm-linux-gnueabihf (2.24-5ubuntu13cross1.98.1)

cpp-4.8-arm-linux-gnueabihf (4.8.4-

2ubuntu1~14.04.1cross0.11.2)

cpp-arm-linux-gnueabihf (4:4.8.2-1)

gcc-4.8-arm-linux-gnueabihf (4.8.4-

2ubuntu1~14.04.1cross0.11.2)

gcc-4.8-arm-linux-gnueabihf-base (4.8.4-

2ubuntu1~14.04.1cross0.11.2)

gcc-4.8-multilib-arm-linux-gnueabihf (4.8.4-

2ubuntu1~14.04.1cross0.11.2)

gcc-arm-linux-gnueabihf (4:4.8.2-1)

libasan0-armhf-cross (4.8.4-2ubuntu1~14.04.1cross0.11.2)

libatomic1-armhf-cross (4.8.4-2ubuntu1~14.04.1cross0.11.2)

libc6-armel-armhf-cross (2.19-0ubuntu2cross1.104)

libc6-armel-cross (2.19-0ubuntu2cross1.104)

libc6-armhf-cross (2.19-0ubuntu2cross1.104)

libc6-dev-armel-armhf-cross (2.19-0ubuntu2cross1.104)

libc6-dev-armel-cross (2.19-0ubuntu2cross1.104)

libc6-dev-armhf-cross (2.19-0ubuntu2cross1.104)

libgcc-4.8-dev-armhf-cross (4.8.4-2ubuntu1~14.04.1cross0.11.2)

libgcc1-armhf-cross (1:4.8.4-2ubuntu1~14.04.1cross0.11.2)

libgomp1-armhf-cross (4.8.4-2ubuntu1~14.04.1cross0.11.2)

libsfasan0-armhf-cross (4.8.4-2ubuntu1~14.04.1cross0.11.2)

libsfatomic1-armhf-cross (4.8.4-2ubuntu1~14.04.1cross0.11.2)

libsfgcc-4.8-dev-armhf-cross (4.8.4-

2ubuntu1~14.04.1cross0.11.2)

libsfgcc1-armhf-cross (1:4.8.4-2ubuntu1~14.04.1cross0.11.2)

libsfgomp1-armhf-cross (4.8.4-2ubuntu1~14.04.1cross0.11.2)

linux-libc-dev-armel-cross (3.13.0-12.32cross1.104)

linux-libc-dev-armhf-cross (3.13.0-12.32cross1.104)

Commit Log for Wed Jul 20 19:01:01 2016

Installed the following packages:

g++-4.8-arm-linux-gnueabihf (4.8.4-

2ubuntu1~14.04.1cross0.11.2)

g++-4.8-multilib-arm-linux-gnueabihf (4.8.4-

2ubuntu1~14.04.1cross0.11.2)

g++-arm-linux-gnueabihf (4:4.8.2-1)

libsfstdc++-4.8-dev-armhf-cross (4.8.4-

2ubuntu1~14.04.1cross0.11.2)

libsfstdc++6-armhf-cross (4.8.4-2ubuntu1~14.04.1cross0.11.2)

libstdc++-4.8-dev-armhf-cross (4.8.4-

2ubuntu1~14.04.1cross0.11.2)

libstdc++6-armhf-cross (4.8.4-2ubuntu1~14.04.1cross0.11.2)

Commit Log for Thu Jul 21 15:18:09 2016

Installed the following packages:

gnome-system-monitor (3.8.2.1-2ubuntu1)

libatkmm-1.6-1 (2.22.7-2ubuntu1)

libcairomm-1.0-1 (1.10.0-1ubuntu3)

libglibmm-2.4-1c2a (2.39.93-0ubuntu1)

libgtkmm-3.0-1 (3.10.1-0ubuntu2)

libpangomm-1.4-1 (2.34.0-1ubuntu1)

libsigc++-2.0-0c2a (2.2.10-0.2ubuntu2)

Commit Log for Thu Jul 28 18:18:54 2016

Installed the following packages:

guile-1.8 (1.8.8+1-8ubuntu3)

guile-1.8-libs (1.8.8+1-8ubuntu3)

Commit Log for Wed Aug 3 16:13:14 2016

Installed the following packages:

autoconf (2.69-6)

automake (1:1.14.1-2ubuntu1)

autotools-dev (20130810.1)

Commit Log for Fri Aug 5 12:58:53 2016

Installed the following packages:

libltdl-dev (2.4.2-1.7ubuntu1)

libtool (2.4.2-1.7ubuntu1)

The following is then executed with the following settings and environment

Environment settings:

 ESDK_BUILDROOT=/home/username/epiphany-sdk

 ESDK_DESTDIR=/home/username/epiphany-sdk/esdk.2016.3.1/

Build settings:

 eSDK install directory: /home/username/epiphany-sdk/esdk.2016.3.1/

 eSDK prefix directory: /opt/adapteva/esdk.2016.3.1

 epiphany-libs host prefix: arm-linux-gnueabihf

 Build version: 2016.3.1

 Build from branch or tag: 2016.3

export EPIPHANY_BUILD_HOME=$HOME/epiphany-sdk

cd $EPIPHANY_BUILD_HOME

sdk/build-epiphany-sdk.sh

Using this environment means that the building and running of programs on the Epiphany no

longer gets bottlenecked by the device, and instead, relies on the performance of the host

machine this is installed on. This makes testing much easier on the Epiphany.

DISCUSSION

When working with the Parallella Epiphany, I found that most of the documentation were

either out-of-date of incorrect in some cases, even when they were provided officially by the

company or third parties developing specifically for the device. The lack of popularity and

“well-knowness” of the hardware contributes to this phenomenon and that help and

assistance were hard to find scouring the web. Most of the tasks completed were done with

the guidance of the in-house Engineer and he mentioned the issues of binaries being out-of-

date as well as instructions provided incorrectly by the developers and that he had spent a

long time debugging to fix some of the problems.

The goal of the Epiphany was mainly to provide high performance at a low wattage. As people

already know, the Epiphany is best suited for performing parallel tasks, using the device the

same way as an Intel or AMD CPU would be a complete disaster. While the device excels at

some parallel tasks, if a processor that draws around the same amount of power performs

better, or even just as well, then the entire point of using the Epiphany is lost. Using the

COPRTHR SDK, performance was disappointing and this was because of the natural unfit of

the OpenCL framework with the Epiphany.

People ask that “What is it that is holding the Epiphany back from being the ‘new’

supercomputer?” and this is a valid question, if the device utilises such low wattage and

outputs a respectable amount of power, why is it not being used in popular fashion? There is

no clear answer to the question, as it turns out, the technology looks to be immature at this

stage and the Epiphany seems to only satisfy a certain niche. There are numerous problems

with the Parallella Epiphany and Adapteva must set out to fix them before mass adoption

takes place in the commercial area.

Programming the Epiphany requires the correct setup of environment. Any details done

incorrectly and the device will throw an error at you and most of the time it is not at all

obvious how to debug it. In the times that I have met obstacles in the research and test phases,

I usually just try to do the entire setup from scratch, hoping that a user error was made during

my steps instead of a fundamental program problem. Sometimes, even accessing the wrong

partitions or memory segments, cause the Epiphany to freeze, and a manual reboot is

required. Since there is no GUI in the build I was using, it meant that pulling the power cord

and re-plugging was the only solution.

CONCLUSION

The project involved a brand-new computing hardware device developed by a small company

based in the USA. It focused on parallel computing and its advantages as well as its

disadvantages. The Parallella Epiphany has proven itself to be an extremely tricky device to

work with, from not having a GUI if choosing to use the latest features with the latest updates,

to incomplete documentation provided officially. The goal was to verify its ability stated by

the Epiphany manufacturer, Adapteva, and while for the most part, including the power usage,

the individual core performance, were certainly impressive, the advantages over other

embedded systems, I am still unable to be fully confident in determining if the Epiphany has

got the factor to beat every other system. In future work, running the Parallella in clusters

may be extremely interesting in figuring out the potential uses for the device as it could

potentially increase performance by a large scale.

REFERENCES

1. Compucon.co.nz. (2009). Compucon Computers NZ - Quality Servers and Workstations -

Company Profile. [online] Available at: http://www.compucon.co.nz/content/view/27/242/.

2. Adapteva, (2016). Epiphany Datasheet [online] Available at:

http://adapteva.com/docs/e16g301_datasheet.pdf.

3. Graham E Fagg. (2006). CS594 Lecture Slides

http://www.netlib.org/utk/people/JackDongarra/WEB-PAGES/SPRING-2006/Lect07-

extra.pdf

4. Brown Deer Technology. (2013). CO-PRocessing THReads (COPRTHR) Software.

http://www.browndeertechnology.com/coprthr.htm

5. Brown Deer Technology, (2013). COPRTHR API Reference. [online] Available at:

http://www.browndeertechnology.com/docs/coprthr_api_ref.pdf.

6. Suzannejmatthews.github.io. (2016). Technical Musings : Parallella Setup Tutorial. [online]

Available at: http://suzannejmatthews.github.io/2015/05/29/setting-up-your-parallella/.

7. Adapteva, (2011). Epiphany Architecture Reference. [online] Available at:

http://www.adapteva.com/docs/epiphany_arch_ref.pdf.

8. Parallella, Parallella Examples, (2016). https://github.com/parallella/parallella-

examples/tree/master/para-para

9. Jan-Willem Buurlage, Tom Bannink, Abe Wits, (25 Aug 2016). Bulk-synchronous pseudo-

streaming algorithms for many core accelerators.

https://arxiv.org/pdf/1608.07200v1.pdf

10. CODUIN, (2016). Benchmarking the Parallella.

http://blog.codu.in/parallella/epiphany/ebsp/2016/03/02/benchmarking-the-parallella.html

http://www.compucon.co.nz/content/view/27/242/
http://adapteva.com/docs/e16g301_datasheet.pdf
http://www.netlib.org/utk/people/JackDongarra/WEB-PAGES/SPRING-2006/Lect07-extra.pdf
http://www.netlib.org/utk/people/JackDongarra/WEB-PAGES/SPRING-2006/Lect07-extra.pdf
http://www.browndeertechnology.com/coprthr.htm
http://www.browndeertechnology.com/docs/coprthr_api_ref.pdf
http://suzannejmatthews.github.io/2015/05/29/setting-up-your-parallella/
http://www.adapteva.com/docs/epiphany_arch_ref.pdf
https://github.com/parallella/parallella-examples/tree/master/para-para
https://github.com/parallella/parallella-examples/tree/master/para-para
https://arxiv.org/pdf/1608.07200v1.pdf
http://blog.codu.in/parallella/epiphany/ebsp/2016/03/02/benchmarking-the-parallella.html

