BTECH 451

Parallella Epiphany

(. COMPUCON

* K |
N * Ve /

\

THE UNIVERSITY OF

Te Whare Wananga o Tamaki Makaurau

NEW ZEALAND

Mong-Fan Wang
6916087

ABSTRACT

This report is a summary of my progress in the fourth-year Bachelor of Technology project. |
am working with a senior engineer in Compucon New Zealand, attempting to further the
research and development on a relatively new technology named the Epiphany.

Parallel computing is a type of computation where there are many calculations carried out
simultaneously. Unlike traditional computing where one problem generally gets solved with
one processor, parallel computing takes the problem and divide them into smaller ones if
possible, and they get processed at the same time.

Epiphany is a coprocessor with extremely low power consumption, this allows for a very high
performance per watt when utilised in parallel computing. My project will verify the claims
of the emerging technology, while also attempt in developing some applications for it.

ACKNOWLEDGEMENT

I would like to thank Dr Sathiamoorthy Manoharan for allowing me the opportunity to work
with Compucon. | would also like to express my appreciation and gratitude for the Compucon
General Manager, TN Chan as well as the Senior Engineer, Dave Fielder and all the staff at
Compucon, for providing an extremely enjoyable work environment, assistance and
guidance during the year-long project.

TABLE OF CONTENTS

Y o Y 4 - [T PSP P O P PO PP PPPRTPRTR 1
ACKNOWIEAZEMENT ..eeiiiiiiee et e s e e e s e e e s sabaeeessabaeeessneneeesnnns 1
GO PANY e a e e e e e e e aaeas 4
o (=Tt 2 = PP PPRRPURRN 4
VT o To] T TP PP PP PP PP PPPPPPPPPPPPPPPPPPRt 4

2 =ToT o L= PRI 4
Hardware & BaCKGrOUNG........oouiiiiiiiiiee ettt e s e e s st e e e s abae e e ssasaeeeeans 5
[T o] - 101U PPRP 5
PAF@lIEIIQ .ttt et e st e e e e e e ans 5
EPIPhany ArChitECIUIE ... i e e s s are e e e e s aaaeae s 5

LI =T 1o 11 Y- PSR 5
TRrEAAEA IMIPL ...ttt sab e st e e s bt e e s beeesabteesabeeesaneeas 5
COPRTHR SDK ...ttt ettt ettt ettt ettt ettt e s at e bt e s st e e beesateenbeesateebeesabeenbeesateenseas 6
STDCL ettt ettt ettt ettt s bt e et he e st e e he e e b e e bt e e be e bt e e a bt e ehee et e e ehteebeenaeeebeenateeabeenaee 6
(o T] o] T T 1V I 1o TU) PRSP 6
DBVICE SOETUP et 7
1 1] T AU o U UUPR RS 7
D@ [o I aoT g ' F= d f V-SSP 7
(o1 e [T =q L3 == T PUTURRRRR 7
SSOH SOTUD ittt e e e ettt e e e e et e et e e e e e e e e tab e e eeeeaeearraan 8
COPRTHR SEEUD 1.ttt ettt ettt ettt ettt e b e sae e e be e sae e eaee e saeeeabeesaseenneesnneenneas 9
SOTEWAIE ..ttt ettt et et e st e e e e b e s eane e s anreena 11
THE BOAIA ... et e bbb s s 12
PrOZIAMIMING ..uuiiiiiiiiiiit i anan 14
Hello World Example - Native ESDK..........uuuiiiieeiie ittt e e eeeivseree e e e e e e 14
Dot Product Example - Native ESDK ...ttt eevreree e e e e 17

D =] 1 0] o PP PPPPTPPRRRN 20
Epiphany BSP - Hello World - ESBP LiDrarycoooccciiiieiee ettt e e e e 21
Para-Para EXample - OPENCL/MPL......ccuuiiirieeciee ettt ettt eree s 24

Parallela Epiphany Workspace Creationcoociiiiiee et 30

Epiphany Program EXECULIONeeeiieiiiiiiiiiieeiee e cciitteeeee e e s eeeitreeeeeeeeeesssantsereeeeessennnnssnnenss 31

MEMOKY & PEIfOIMAaNCEuiiiiiiiee et e e e e e et e e e e eaaa e e e e enraeeeeenaeeaean 32
COPRTHR ..ttt ettt et s e e b e et e b e st e e b e e e as e e sbeesareenbeeeaneenseesaneenneenns 33
BB P ettt b e e h et b e e s a et e Rt e e h et e bt e en e e e b e e neeebeennneeareen 33

Cross Compilation ENVIFONMENTuiiiiiiiii e e e e s e e e e s e e s s nneare e e e e e e e ennnes 35

01T o U1 [PP 41

CONCIUSTON .ttt s e e s e e s e e e st e s sbe e s saneessaneesans 42

RO EIENCES ..ottt ettt e e e et ettt eeesesee e st e aaa e seseeetaeassnessseeereessnnneresesererennnn 43

COMPANY

Compucon New Zealand is a wholly New Zealand owned company since April 2011, that
manufactures computer systems and has excellent reputation and quality in the reseller and
user communities.

Partnering with world class component manufacturers, Compucon offers high quality and
reliable computer system builds.

Compucon New Zealand also specialises in high performance parallel computing and this will
be the main focus of this project [1].

The company has had many University of Auckland students since 2002 completing projects
with them in the Bachelor of Technology program.

PROJECT BRIEF

PURPOSE

The aim of this project is to verify the claims of the Epiphany manufacturer and develop a
number of applications to drive this new technology. The programs will be coded in the C or
C++language, asthese are low level languages, they communicate with the chip much better
than a high-level language like Python.

PEOPLE

TN Chan is the General Manager of Compucon New Zealand, as well as the full supervisor of
this project. David Fielder is the Senior Engineer of the company who assists me and provides
hands-on guidance in the Compucon House one day a week.

HARDWARE & BACKGROUND

EPIPHANY
A co-processor manufactured by Adapteva, the particular model | am working with has 16
high performance RISC CPU cores, programmable with both C/C++ and OpenCL.
Advantages include very low wattage for power consumption and being very flexible in terms
of scalability.

PARALLELLA

The co-processor runs on the Parallella board which is a credit card sized board, includes a
Gigabit Ethernet connection, HDMI port and 1 GB of SDRAM [2].

EPIPHANY ARCHITECTURE

As the Epiphany is a co-processor, it cannot do everything that a normal CPU can. Instead, it

is a simplified processor that carries out specialised tasks. This is a disadvantage of the
Epiphany; however, it is also the advantage at the same time as being specific makes it much
more energy efficient than a standard CPU. Memory on the Epiphany uses little-endian.
Doubles are not supported.

THREADING

e Multi-Threading improving performance [3]
e CPU utilisation is better
e 10 latency hiding

THREADED MPI

Threaded MPI is the go to architecture for the Parallella Epiphany. The fully divergent RISC
cores allow high performance with inter-core data movement and maximise data re-use [4].

Brown Deer Technology claims that the programming is very easy, performance is great and
the libraries are readily available. It is also only going to get easier as technology progresses.
Part of my project is also to verify the claims of Brown Deer.

The power efficiency of the Epiphany rivals many other processes in the market today and
threaded MPI works perfectly aligned with that goal.

COPRTHR SDK

This term stands for the CO-PRocessing THReads. It is a SDK that provides libraries and tools
for developers that are developing multi-core applications. It provides support for the
Parallella in OpenCL and STDCL for the Epiphany co-processor [5].

STDCL

This is a portable API for targeting compute offload accelerators and co-processors.

EPIPHANY LAYOUT

-

Image credit. Epiphany Manual

4 MESH NODE
DMA
RISC CPU R
Local Network
Memory Inleeface
o

7

N

(7]

DEVICE SETUP

PARALLELLA SETUP

The following hardware are required:

Parallella Board

4-Port Powered USB Hub

8 GB Micro-SD Card with an Adapter
Micro-USB to USB (Female) Cable
Micro-HDMI to HDMI (Female) Cable
Crossover Ethernet Cable [6]

The following software is required:

https://www.parallella.org/create-sdcard/
o The Manufacturer has included 4 versions of the Ubuntu image:
= Desktop Headless
= Desktop with Display
= Kickstarter Headless
= Kickstarter with Display
For the board | am working with, I will be using both the Desktop Headless and with
Display.

SD CARD FORMATTING

The SD card houses the Operating System for the Parallella.

Use the SDFormatter to fully erase the SD card. Now use a Win32 Disk Imager program to
load the file containing the Parallella image onto the SD card. It may appear that there are
no files in the SD card from Windows Explorer, however, this is normal. Safely eject the SD
card and pop it into the Parallella.

EXPANDING IMAGE

This command shows that only a small portion of the SD Card is available for use:

| df -h

By entering the following series of commands, the image will be expanded so that the entire

SD card’s storage size can be utilised correctly.

dmesg | grep "root"
root=/dev/mmcblk0p?2

/dev/mmcblk0p2 isthe root partition, expand this by entering:

| fdisk /dev/mmcblk0 |

Enter ‘m’ for help. Delete partition 2 (root partition), then create a new partition 2. Enter 'd’
followed by ‘2’ to delete the root partition. Then 'n’ followed by ‘'p’ and 2" to create a new
partition 2. For the first and last sector, select default. Enter ‘p’ to confirm and write it to disk
with ‘w'.

Machine is then rebooted with:

‘sudo shutdown -r now

After reboot, enter:

| resize2fs /dev/mmcblk0p?2

This ensures the resize.

SSH SETUP
Winbows

Microsoft Windows does not have built in SSH, this means PUTTY for Windows is used. It can
be downloaded from:

e http://www.putty.org/

Linux
In Linux, SSH is built in the Terminal.

NETWORK CONNECTION

There are two ways to connect to the Parallella board. Finding the IP address assigned to the
machine, or assigning a static address to it.

DynAmic IP

Find the IP address of the Parallella board by using any sort of network tool that displays all
devices connected in a Local Area Network.

STATIC IP
The new headless image uses the following form for the file “/etc/network/interfaces”

interfaces(5) file used by ifup(8) and ifdown (8)
Include files from /etc/network/interfaces.d:

|source—directory /etc/network/interfaces.d

Itis better to not alter this. This allows the contents of the folder “/etc/network/interfaces.d”

to contain the files “etho” and “lo”. The original “etho” reads

auto ethO
iface eth0 inet dhcp

and should be altered to read (for the Compucon network environment)

auto ethO

iface eth0 inet static
address 192.168.1.101
netmask 255.255.255.0
network 192.168.1.0
broadcast 192.168.1.255
gateway 192.168.1.254

COPRTHR SETUP

Winbows

Run the Windows installer from https://github.com/browndeer/coprthr (libstdcl-1.4.0-win7-

install.msi) and set the appropriate paths to use the headers and library.

Linux
Pre-requistites:

e Linux Ubuntu
e libelf-0.8.13.tar.gz (www.mrs11.de/software/libelf-0.8.13.tar.gz)

o libevent-2.0.18-stable.tar.gz (github.com/downloads/libevent/libevent/libevent-
2.0.18-stable.tar.gz)
e libconfig-1.4.8.tar.gz (www.hyperrealm.com/libconfig/libconfig-1.4.8.tar.gz)

® m4-1.4.16.tar.gz (http://ftp.gnu.org/gnu/ms/)

o flex-2.5.35.tar.gz (http://flex.sourceforge.net/)

e bison-2.5.tar.gz (http://ftp.gnu.org/gnu/bison/)

Pre-compiled Package:
e coprthr-1.5.0-rc2-parallella.tgz

The libraries are unpacked by entering the following commands:

./configure
sudo make install

Unpacking the file will produce a directory browndeer/.

https://github.com/browndeer/coprthr
http://www.mr511.de/software/libelf-0.8.13.tar.gz
http://www.hyperrealm.com/libconfig/libconfig-1.4.8.tar.gz
http://www.hyperrealm.com/libconfig/libconfig-1.4.8.tar.gz
http://www.hyperrealm.com/libconfig/libconfig-1.4.8.tar.gz
http://www.hyperrealm.com/libconfig/libconfig-1.4.8.tar.gz
http://ftp.gnu.org/gnu/m4/
http://flex.sourceforge.net/
http://ftp.gnu.org/gnu/bison/

Enter following commands to remove previous installations as well as installing the new
version:

sudo ./browndeer/uninstall coprthr parallella.sh
sudo ./browndeer/install coprthr parallella.sh

Finally, add the following environmental variables to PATH:

export PATH=/usr/local/browndeer/bin:$PATH

export

LD LIBRARY PATH=/usr/local/browndeer/lib:/usr/local/lib:$LD L
IBRARY PATH

SOFTWARE

The current version of the Parallella Epiphany runs on Linux Ubuntu 15.04, while | will be
mainly experimenting with the headless image, meaning no display is utilised. For me to get
any sort of feedback is to do the SSH setup | have mentioned earlier to connect to the device
and communicate through another computer on the same network. The reason that the
image with the HDMI output is not used is due to the fact that it is extremely outdated at
2014 and the latest ESDK and power saving features are not implemented due to challenges
with the FPGA HDMI integration.

Ubuntu Desktop B 3 o) 1017am

)
=
)
B
a
2
=

THE BOARD

AR OO UEEL

; s oAAF
% o
. AV
T 3 S

IR
uun‘_t\l}g\‘\ .

This is the parallella board with the Epiphany co-processor. The bottom left is the power input,
the top left is the Ethernet port and the two connections on the right are the USB and HDMI
connections.

11100
1141

411
- lI/I{{I/{l/IIIII

As shown here, a fan must be used at all times to ensure the board and chip do not overheat.

PROGRAMMING

The Parallella uses a host/device structure, meaning every application needs a corresponding
program for each side.

While the programs are separate, all files are created and stored on the host (in this case the
ARM chip) Below are examples from the Parallella GitHub that | have first initially ran to test
for performance and get an idea on how programs are executed on the Parallella Epiphany.

HELLO WORLD EXAMPLE - NATIVE ESDK
DEVICE PROGRAM - E_HELLO_WORLD.C

#include
#include
#include

<stdio.h>
<stdlib.h>
<string.h>

#include "e lib.h"

int main(void) {

const char ShmName [] = "hello shm";

const char Msg[] = "Hello World from core
0x%03x!";

char buf[256] = { 0 };

e coreid t coreid;

e memseg t emem;

unsigned my row;

unsigned my col;

coreid = e get coreid();

e coords from coreid(coreid, &my row, &my col);

if (E OK != e shm attach(&emem, ShmName)) {
return EXIT FAILURE;

}

snprintf (buf, sizeof (buf), Msg, coreid);

if (emem.size >= strlen(buf) + 1) {

e write((void*) &emem, buf, my row, my col, NULL,
strlen (buf) + 1);
} else {
return EXIT FATILURE;

}

return EXIT SUCCESS;

HOST PROGRAM - HELLO_WORLD.C

#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <errno.h>
#include <unistd.h>
#include <e-hal.h>

const unsigned ShmSize = 128;
const char ShmName[] = "hello shm";
const unsigned Seglen = 20;

int main(int argc, char *argv[])
{
unsigned row, col, coreid, 1i;
e platform t platform;
e epiphany t dev;
e mem t mbuf;
int rc;

srand (1) ;

e set loader verbosity(H DO);
e set host verbosity(H DO);

e init (NULL) ;
e reset system();
e get platform info(&platform);

rc = e shm alloc(&mbuf, ShmName, ShmSize);
if (rc != E OK)

rc = e _shm attach (&mbuf, ShmName) ;
if (rc != E OK) {

fprintf (stderr, "Failed to allocate shared memory.
Error is %s\n",
strerror (errno)) ;
return EXIT FATLURE;

for (i=0; i<Seqglen; i++)

char buf[ShmSize];

row = rand() % platform.rows;
col = rand() % platform.cols;
coreid = (row + platform.row) * 64 + col +

platform.col;
printf ("$3d: Message from eCore 0x%03x (%2d, %2d) :
i, coreid, row, col);

e open(&dev, row, col, 1, 1);
e reset group (&dev);

if (E OK != e load("e hello world.elf",

E TRUE)) {

fprintf (stderr, "Failed to load
e hello world.elf\n");

return EXIT FAILURE;

}

usleep (10000) ;

e read(&mbuf, 0, 0, 0, buf, ShmSize);
printf ("\"%s\"\n", buf);

e close(&dev) ;

}

e shm release (ShmName) ;
e finalize();

return 0;

&dev,

0, O,

- linaro@linaro-nano: ~/epiphany-examples/apps/hello-world
-] PIP P PP

File Edit Tabs Help

DOT PRODUCT EXAMPLE - NATIVE ESDK
DEVICE PROGRAM - E_TASK.C

#include <stdio.h>
#include <stdlib.h>
#include "e-lib.h"
#include "common.h"

int main (void)
{

unsigned *a, *b, *c, *d;

//Clear Sum
(*(c))=0x0;

//Sum of product calculation

for (i=0; 1<N/CORES; 1i++) {
(*(c)) += ali]l * b[i];

}

//Raising "done" flag
(*(d)) = 0x00000001;

//Put core in idle state
asm __volatile ("idle");

}

int 1i;

a = (unsigned *) 0x2000;//Address of a matrix
(transfered here by host)

b = (unsigned *) 0x4000;//Address of b matrix
(transfered here by host)

c = (unsigned *) 0x6000;//Result

d = (unsigned *) 0x7000;//Done

HOST PROGRAM - MAIN.C

#include <stdlib.h>
#include <stdio.h>
#include <e-hal.h>
#include "common.h"

#define RESULT 85344 //recognize /Sum {i=0}"{n-1} i"2

\frac{N(N-1) (2N-1) } {6}

int main (int argc, char *argv([]) {
e platform t platform;
e epiphany t dev;

int a[N], b[N], c[CORES];

int done[CORES],all done;

int sop;

int 1i,73;

int sections = N/CORES; //assumes N % CORES = 0
unsigned clr 0;

//Calculation being done

printf ("Calculating sum of products of two integer vectors
of length %d initalized from (0..%d) using %d Cores.\n",N,N-
1,CORES) ;

//Initalize Epiphany device

e init (NULL);

e reset system();
//reset Epiphany

e get platform info(&platform);

e open(&dev, 0, 0, platform.rows, platform.cols); //open
all cores

//Initialize a/b input vectors on host side
for (i=0; 1i<N; i++){

ali] = 1i;

b[i] = i;
}

//Load program to cores
e load group("e task.elf", &dev, 0, 0, platform.rows,
platform.cols, E FALSE);

//1. Copy data (N/CORE points) from host to Epiphany local
memory
//2. Clear the "done" flag for every core
for (i=0; i<platform.rows; i++) {
for (j=0; j<platform.cols;j++) {
e write(&dev, i, j, 0x2000,
&a[(i*platform.cols+j) *sections], sections*sizeof (int));
e write(&dev, i, J, 0x4000,
&b [(i*platform.cols+j) *sections], sections*sizeof (int));
e write(&dev, i, j, 0x7000, &clr, sizeof(clr));
}
}

// start cores
e start group (&dev);

//Check if all cores are done
while (1) {
all done=0;
for (i=0; i<platform.rows; i++) {
)

for (j=0; j<platform.cols;j++) {

e read(&dev, 1i, j, 0x7000, &done[i*platform.cols+j],
sizeof (int)) ;
all donet+=done[i*platform.cols+]j];
}
}
1f(all done==CORES) {
break;
}
}

//Copy all Epiphany results to host memory space
for (i=0; i<platform.rows; i++) {
for (3j=0; j<platform.cols;j++) {
e read(&dev, 1i, j, 0x6000, &cli*platform.cols+j],
sizeof (int)) ;
}
}

//Calculates final sum-of-product using Epiphany results as
inputs
sop=0;
for (i=0; i<CORES; i++) {
sop += c[i];

}

//Print out result

printf ("Sum of Product Is %d!\n",sop);
//Close down Epiphany device

e close(&dev);

e finalize();

if (sop==RESULT) {
return EXIT SUCCESS;
}
else{
return EXIT FAILURE;
}

XTEMP

The xTemp utility is a program under the Parallella Utility package, where the temperature
of the board can be visualised. With SSH access, X11 forwarding is needed to see the
graphical output on the remote connection.

B# parallella@parallella: ~/parallella-examples — O x

X xtemp - O =

40,0

22,0
0.7

EPIPHANY BSP - HELLO WORLD - ESBP LIBRARY
DEvICE PROGRAM - E_CORE_HELLO.C

#include <e bsp.h>
int main ()
{

bsp begin();

int n = bsp nprocs();
int p = bsp pid();

ebsp message ("Hello world from core %d/%d", p, n);
bsp end();

return 0;

HOST PROGRAM - HOST_HELLO.C

#include <host bsp.h>
#include <stdio.h>

int main(int argc, char **argv)

{ bsp init ("ecore hello.srec", argc, argv);
bsp begin (bsp nprocs());
ebsp spmd() ;

bsp end();

return O;

RUNNING MAKEFILE

@ parallella@parallella: ~/parallella-exarmples/ebsp-hello — O x

PROGRAM OUTPUT

@ parallella@parallella: ~/epiphany-bsp/examples/bin/hello — O x

PARA-PARA EXAMPLE - OPENCL/MPI

OPENCL REQUIREMENTS

###Libelf prerequisite

wget www.mr511.de/software/libelf-0.8.13.tar.gz
tar -zxvf libelf-0.8.13.tar.gz

cd 1libelf-0.8.13

./configure

sudo make install

cd ../

###Libevent prerequisite

wget github.com/downloads/libevent/libevent/libevent-2.0.18-
stable.tar.gz

tar -zxvf libevent-2.0.18-stable.tar.gz

cd libevent-2.0.18-stable

./configure

sudo make install

cd ../

###Libconfig prerequisite

wget www.hyperrealm.com/libconfig/libconfig-1.4.8.tar.gz
tar -zxvf libconfig-1.4.8.tar.gz

cd libconfig-1.4.8

./configure

sudo make install

cd ../

###Install parallella opencl package

wget http://www.browndeertechnology.com/code/coprthr-1.6.0-
parallella.tgz

tar -zxvf coprthr-1.6.0-parallella.tgz

sudo ./browndeer/scripts/install coprthr parallella.sh

Add paths to .bashrc

echo 'export PATH=/usr/local/browndeer/bin:S$PATH' >>
~/.bashrc

echo 'export

LD LIBRARY PATH=/usr/local/browndeer/lib:/usr/local/lib:$LD L
IBRARY PATH' >> ~/ .bashrc

Add paths to root .bashrc

sudo su

echo 'export PATH=/usr/local/browndeer/bin:S$SPATH' >>
~/.bashrc

echo 'export

LD LIBRARY PATH=/usr/local/browndeer/lib:/usr/local/lib:$LD L
IBRARY PATH' >> ~/ .bashrc

Add paths to .cshrc

echo 'setenv PATH /usr/local/bin:$PATH' >> ~/.cshrc

echo 'setenv LD LIBRARY PATH
/usr/local/browndeer/lib:/usr/local/lib:$LD LIBRARY PATH' >>
~/.cshrc

MPI REQUIREMENTS

wget http://www.open-

mpi.org/software/ompi/v1.8/downloads/openmpi-1.8.1.tar.gz

tar -zxvf openmpi-1.8.1l.tar.gz

cd openmpi-1.8.1

./configure --prefix=/usr/local \
-—enable-mpirun-prefix-by-default \
--enable-static

make all

sudo make install

OPENCL IMPLEMENTATION

#define DEVICE TYPE CL DEVICE TYPE ACCELERATOR

#include <stdlib.h>
#include <stdio.h>
#include <CL/cl.h>

int main ()
{
int i, 73;
int err;
char buffer[256];

unsigned int n = 1024;

cl uint nplatforms;
cl platform id* platforms;
cl platform id platform;

clGetPlatformIDs(0,0, &nplatforms) ;
platforms =

(cl platform id*)malloc (nplatforms*sizeof (cl platform id));
clGetPlatformIDs (nplatforms, platforms, O0);

for (i=0; i<nplatforms; i++) {
platform = platforms[i];

clGetPlatformInfo (platforms[i],CL PLATFORM NAME,256,buffer,0)
if (!strcmp (buffer, "coprthr")) break;
}

if (i<nplatforms) platform = platforms[i];
else exit (1) ;

cl uint ndevices;
cl device id* devices;
cl device id dev;

clGetDevicelIDs (platform, DEVICE TYPE, O, 0, &ndevices) ;
devices =

(cl device id*)malloc (ndevices*sizeof (cl device id));
clGetDevicelIDs (platform, DEVICE TYPE,ndevices,devices,0);

if (ndevices) dev = devices[0];
else exit (1);

cl context properties ctxprop[3] = {
(cl context properties)CL CONTEXT PLATFORM,
(cl context properties)platform,
(cl context properties)O

I

cl context ctx = clCreateContext (ctxprop,1, &dev,0,0, &err) ;

cl command queue cmdqg =
clCreateCommandQueue (ctx, dev, 0, &err) ;

size t a sz = n*n*sizeof (float);
size t b sz = n*sizeof (float);
size t ¢ sz = n*sizeof (float);

float* a = (float*
float* b = (float*

malloc (n*n*sizeof (float));
malloc (n*sizeof (float)):;

)
)

float* ¢ = (float*)malloc(n*sizeof (float));

for (i=0;i<n;i++) for (3=0;j<n;j++) ali*n+j] = 1.1£f*i*7;

for (i=0;1i<n;i++) b[i] = 2.2f*1;

for (i=0;1i<n;i++) c[i] = 0.0f;

/=

cl mem a buf =
clCreateBuffer (ctx,CL MEM USE HOST PTR,a sz,a, &err);

cl mem b buf =
clCreateBuffer (ctx,CL MEM USE HOST PTR,b sz,b, &err);

cl mem c buf =
clCreateBuffer (ctx,CL MEM USE HOST PTR,c sz,c,&err);

const char kernel codel[] =
" kernel void matvecmult_kern(\n"
" uint n, global float* a, global float* b, global
float* ¢)\n"

" { \H"

" int 1 = get global id(0);\n"

nw 1nt j;\n"

" float tmp = 0.0£f;\n"

" for (3=0;j<n;j++) tmp += al[i*n+j] * b[j];\n"

" cl[i] = al[i*n+i];\n"

" } \H",'
/= e e
//Compiling the kernel
e e e
const char* src[l] = { kernel code };
size t src sz = sizeof (kernel code);

cl program prg = clCreateProgramWithSource (ctx,1, (const
char**) &src,

&src sz, &err);
clBuildProgram(prg, 1, &dev,0,0,0);

cl kernel krn =

clCreateKernel (prg, "matvecmult kern", &err);

clSetKernelArg (krn, 0, sizeof

(cl uint), &n);
clSetKernelArg(krn,1l,sizeof

(

(

cl mem), &a buf);
cl mem), &b buf);
cl mem), &c buf);

clSetKernelArg (krn, 2, sizeof
clSetKernelArg (krn, 3,sizeof

—~ o~ o~ o~

size t gtdsz[] = { n };
size t ltdsz[] = { 16 };
cl event ev[10];

clEnqueueNDRangeKernel (cmdq, krn,1,0,gtdsz,1tdsz, 0,0, &ev[0]);

clEnqueueReadBuffer (cmdg,c buf,CL TRUE,O0,c sz,c,0,0,&ev[1]);

err = clWaitForEvents (2,ev);

for (i=0;1i<n;i++) printf("c[%d] %$f\n",i,c[i]):;

clReleaseEvent (ev[1l]);

clReleaseEvent (ev[0]);
clReleaseKernel (krn) ;
clReleaseProgram (prg) ;
clReleaseMemObject (a buf)
clReleaseMemObject (b buf);
clReleaseMemObject (c_buf);
clReleaseCommandQueue (cmdq) ;
clReleaseContext (ctx) ;

14

free(a);
free(b);
free(c);

MPI| IMPLEMENTATION

#include <stdio.h>
#include <mpi.h>

int main(int argc, char *argv[]) {
int numprocs, rank, namelen;
char processor name[MPI MAX PROCESSOR NAME];

MPI Init (&argc, &argv);

MPI Comm size (MPI COMM WORLD, &numprocs);

MPI Comm rank (MPI COMM WORLD, &rank);

MPI Get processor name (processor name, &namelen);

printf ("Hello World from MPI Process %d on machine %s\n",
rank, processor name);

MPI Finalize();

}

[8]

Using this example, | am able to see how the device handles OpenCL and MPI differently.

PARALLELA EPIPHANY WORKSPACE CREATION

The following commands in the Terminal or PUTTY SSH connection will allow the workspace

creation. This will allow for easier programming on the Epiphany.

cd ~/Downloads

wget

ftp://ftp.parallella.org/esdk/o0ld/esdk.5.13.07.10 linux x86 6
4 armv’/1l.tgz

sudo mkdir -p /opt/adapteva

sudo mv esdk.5.13.07.10 linux x86 64 armv7l.tgz /opt/adapteva
cd /opt/adapteva

sudo tar xvf esdk.5.13.07.10 linux x86 64 armv7/l.tgz

sudo 1n -sTf esdk.5.13.07.10 /opt/adapteva/esdk

sudo apt-get install libmpfr-dev libgmp3-dev libmpc-dev
openjdk-6-jre tcsh csh g++ -y

sudo nano /etc/environment
PATH="/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin
:/bin:/usr/games:/usr/local/games:/opt/adapteva/esdk/tools/e-
gnu/bin”

EPIPHANY HOME="/opt/adapteva/esdk”

LD LIBRARY PATH="/usr/lib:/usr/lib/x86 64-linux-gnu”

cd /usr/lib/x86 64-linux-gnu

sudo cp libmpc.so libmpc.so.2

sudo ldconfig

sudo cp libmpfr.so libmpfr.so.l

sudo cp libgmp.so libgmp.so.3

sudo nano /opt/adapteva/esdk/tools/host/bin/echo-process

Save empty file

sudo chmod 777 /opt/adapteva/esdk/tools/host/bin/echo-process
e-eclipse

Create a workspace and name the project. Since the Epiphany is 16 core in this case, we must
have the settings of:

Number of rows = 4

Number of columns = 4

Row number in first core = 32
Column number of first core =8

This creates a master project for all projects that will be created.

To program the Epiphany, we now change the host name to the Epiphany IP address or host
name in our network. The ‘stop at main’ checkbox should be unticked and both ‘Resume’ and
‘Verbose mode’ should be ticked.

The final step is to right click the first core project and complete the following:

C/C++ Build — Settings — Epiphany Linker — Linker Description File

Change Select LDF to: ${EPIPHANY_HOME}/bsps/current/legacy.ldf

In the Epiphany Linker, add e-lib to the libraries, then apply these settings to all of the
projects. A dialog should pop up showing success messages if completed correctly.

EPIPHANY PROGRAM EXECUTION

Type e-server in the Terminal.
The Epiphany listens on the port 51000 by default.

MEMORY & PERFORMANCE

To run tests on the Epiphany, we must first understand how the device works. The Epiphany
has 16 cores, and each of them has a separate DMA Engine. This stands for Direct Memory
Access, and is responsible for transferring data between the Epiphany cores. Two DMA
channels are present; this means that two pairs of addresses (source and destination) can be
set while the CPU continues to work on other tasks. The addresses are also not limited to their
own internal memory; it can be any other core within the Epiphany.

Message passing between the cores are different in the Epiphany compared to standard
processors. The Epiphany utilises a message queue. This eliminates the need of registering
variables. The Epiphany cores have very little local memory but they are fast. Bigger external
memory is present but they come at a speed cost.

e local memory: 32 KB for each core
e external memory: 32 MB shared for all cores [10]

A couple of memory transfer tests were done to benchmark the Epiphany memory speed,
here are the results:

e Host to Internal Memory
o Write speed - 14.12 MBps
o Read speed - 16.95 MBps
e Host to External Memory
o Write speed - 99.52 MBps
o Read speed -120.13 MBps
e Using memcpy
o Core to Internal Memory
= Write speed - 487.59 MBps
= Read speed -114.85 MBps
o Core to External Memory
= Write speed - 139.02 MBps
= Read speed -4.15 MBps
e Using DMA:
o Core to Internal Memory
= Write speed - 1938.79 MBps
= Read speed -478.52 MBps
o Core to External Memory
= Write speed - 469.25 MBps
= Read speed - 151.54 MBps

The transfers to internal memory utilises a single cycle for read and write, however, if the
destination and source are on different Epiphany cores, latency increases as the data hops
from core to core in the mesh network. The external memory latency is affected by a
multitude of variables, including the mesh latency, speed of the RAM as well as the speed of
the interface between the FPGA chip on board of the Parallella and the Epiphany.

COPRTHR

Running a vector multiplication tool on the Epiphany is done by allocating each of the vectors
to the co-processor memory. Each co-processor then computes the vector that it has been
assigned and multiplies each element with the corresponding element in another vector. The
result is then set to another vector.

Using the COPRTHR SDK and comparing the performance between the cores of the Epiphany
and the main ARM processor on board, the result is that the Epiphany cores working together,
handled the tool about three times slower than the ARM processor.

As the COPRTHR SDK is based on the OpenCL framework, there seems to be an unnatural fit
between the framework and the hardware, resulting in this poor performance.

EBSP

BSP stands for Bulk Synchronous Parallel, while EBSP is a specialised version developed
specifically for the Epiphany, hence the name Epiphany BSP. It is a model where the
algorithms use computations that are non-blocking and then a synchronisation even occurs
at the end to ensure that all data communications execute in the correct way.

The company that developed EBSP is CODUIN, and they are based in the Netherlands which
focuses on software libraries development for multicore embedded systems.

The BSP model was developed in the 1980s, and thee important requirements had to be
followed:

e |t has n processors capable of computation and communication, i.e. it allows for
local memory transactions.

e [t has a network in place that allows the different processors to send and receive
data.

e It has a mechanism that allows for the synchronisation of these processors, e.g. by
means of a blocking barrier.

Consider the EBSP Hello World example again, notice the processor id is out of order here as
there is no set logic on which core gets and processes the message first. This is a proof that
the program is running in parallel instead of serial. Using the write and read methods of EBSP,
we can get better control over how we want to address the memory of each core.

CR0OSS COMPILATION ENVIRONMENT

To make developing and running applications on the Parallella Epiphany smoother and easier,
a cross compilation environment can be setup. The following packages are installed:

build-essential git bison flex libgmp3-dev libncurses-dev
libmpc-dev libmpfr-dev texinfo xzip lzip zip

The ARM/Linux cross-toolchain is installed from the below packages:

gcc-arm-linux-gnueabihf gt+-arm-linux-gnueabihf

The following packages were then installed in the log order:

Commit Log for Wed Jul 20 18:46:28 2016

Installed the following packages: (Not a prerequisite but very
necessary)

gedit (3.10.4-0Oubuntud)gedit-common (3.10.4-0ubuntud)
girl.2-gtksource-3.0 (3.10.2-0ubuntul)
girl.2-peas-1.0 (1.8.1-2ubuntu?2)
gnome-user—-guide (3.8.2-1)
libgtksourceview-3.0-1 (3.10.2-0ubuntul)
libgtksourceview-3.0-common (3.10.2-0ubuntul)
libpeas-1.0-0 (1.8.1-2ubuntu?)

libpeas-common (1.8.1-2ubuntu?)

libpython3.4 (3.4.3-1ubuntul~14.04.3)
libyelpO0 (3.10.2-0ubuntul)

libzeitgeist-2.0-0 (0.9.14-0Oubuntu4.1l)
python-gi-cairo (3.12.0-1lubuntul)
python-zeitgeist (0.9.14-0Oubuntu4.l)

yelp (3.10.2-0Oubuntul)

yelp-xsl (3.10.1-1)

zeitgeist (0.9.14-0Oubuntu4d.l)

zeitgeist-core (0.9.14-Oubuntu4d.l)
zeitgeist-datahub (0.9.14-0Oubuntu4.1l)

Commit Log for Wed Jul 20 18:49:14 2016

Installed the following packages:

binutils (2.24-5ubuntuld.l)
build-essential (11.6ubuntuo6)
dpkg-dev (1.17.5ubuntub.7)

fakeroot (1.20-3ubuntuZ?)

g+t (4:4.8.2-1ubuntub)

gt+-4.8 (4.8.4-2ubuntul~14.04.3)

gcc (4:4.8.2-1lubuntub)

gcc-4.8 (4.8.4-2ubuntul~14.04.3)
libalgorithm-diff-perl (1.19.02-3)
libalgorithm-diff-xs-perl (0.04-2build4)
libalgorithm-merge-perl (0.08-2)
libasan0 (4.8.4-2ubuntul~14.04.3)
libatomicl (4.8.4-2ubuntul~14.04.3)
libc-dev-bin (2.19-0Oubuntu6.9)
libco-dev (2.19-0Oubuntu6.9)
libdpkg-perl (1.17.5ubuntub.7)
libfakeroot (1.20-3ubuntu2)
libfile-fcntllock-perl (0.14-2buildl)
libgcc-4.8-dev (4.8.4-2ubuntul~14.04.3)
libitml (4.8.4-2ubuntul~14.04.3)
libstdc++-4.8-dev (4.8.4-2ubuntul~14.04.3)
libtsan0 (4.8.4-2ubuntul~14.04.3)
linux-libc-dev (3.13.0-92.139)

make (3.81-8.2ubuntu3l)

manpages—-dev (3.54-1lubuntul)

Commit Log for Wed Jul 20 18:50:05 2016

Installed the following packages:

git (1:1.9.1-1ubuntu0.3)
git-man (1:1.9.1-1lubuntu0.3)
liberror-perl (0.17-1.1)

Commit Log for Wed Jul 20 18:50:43 2016

Installed the following packages:

bison (2:3.0.2.dfsg-2)
libbison-dev (2:3.0.2.dfsg-2)
libsigsegv2 (2.10-2)

m4 (1.4.17-2ubuntul)

Commit Log for Wed Jul 20 18:51:23 2016

Installed the following packages:

flex (2.5.35-10.1lubuntu?)
libfl-dev (2.5.35-10.1lubuntu2)

Commit Log for Wed Jul 20 18:52:11 2016

Installed the following packages:

libgmp-dev (2:5.1.3+dfsg-lubuntul)
libgmp3-dev (2:5.1.3+dfsg-lubuntul)
libgmpxx4ldbl (2:5.1.3+dfsg-lubuntul)

Commit Log for Wed Jul 20 18:53:26 2016

Installed the following packages:

libncursesb5-dev (5.9+20140118-1ubuntul)
libtinfo-dev (5.94+420140118-1ubuntul)

Commit Log for Wed Jul 20 18:54:55 2016

Installed the following packages:

libmpc-dev (1.0.1-lubuntul)
libmpfr-dev (3.1.2-1)

Commit Log for Wed Jul 20 18:55:40 2016

Installed the following packages:

libintl-perl (1.23-1buildl)
libtext-unidecode-perl (0.04-2)
libxml-libxml-perl (2.0108+dfsg-lubuntu0.1)
libxml-namespacesupport-perl (1.11-1)
libxml-sax-base-perl (1.07-1)
libxml-sax-expat-perl (0.40-2)
libxml-sax-perl (0.99+dfsg-2ubuntul)
texinfo (5.2.0.dfsg.1-2)

Commit Log for Wed Jul 20 18:58:00 2016

Installed the following packages:
xzip (1:1.8.2-3)

Commit Log for Wed Jul 20 18:58:29 2016

Installed the following packages:
lzip (1.14-2)

Commit Log for Wed Jul 20 18:59:59 2016

Installed the following packages:

binutils-arm-linux-gnueabihf (2.24-5ubuntul3crossl.98.1)
cpp-4.8-arm-linux-gnueabihf (4.8.4-
2ubuntul~14.04.1cross0.11.2)

cpp-arm-linux-gnueabihf (4:4.8.2-1)
gcc-4.8-arm-linux-gnueabihf (4.8.4-
2ubuntul~14.04.1cross0.11.2)
gcc-4.8-arm-linux-gnueabihf-base (4.8.4-
2ubuntul~14.04.1cross0.11.2)
gcc-4.8-multilib-arm-linux-gnueabihf (4.8.4-
2ubuntul~14.04.1cross0.11.2)

gcc-arm-linux-gnueabihf (4:4.8.2-1)

libasanO-armhf-cross (4.8.4-2ubuntul~14.04.1cross0.11.2)
libatomicl-armhf-cross (4.8.4-2ubuntul~14.04.1cross0.11.2)
libc6-armel-armhf-cross (2.19-0ubuntu2crossl.104)
libc6-armel-cross (2.19-0ubuntu2crossl.104)
libc6-armhf-cross (2.19-0ubuntu2crossl.104)
libco-dev-armel-armhf-cross (2.19-0Oubuntu2crossl.104)
libc6b-dev-armel-cross (2.19-0ubuntu2crossl.104)
libc6b-dev-armhf-cross (2.19-0ubuntu2crossl.104)
libgcc-4.8-dev-armhf-cross (4.8.4-2ubuntul~14.04.1cross0.11.2)
libgccl-armhf-cross (1:4.8.4-2ubuntul~14.04.1cross0.11.2)
libgompl-armhf-cross (4.8.4-2ubuntul~14.04.1cross0.11.2)
libsfasan0O-armhf-cross (4.8.4-2ubuntul~14.04.1cross0.11.2)
libsfatomicl-armhf-cross (4.8.4-2ubuntul~14.04.1cross0.11.2)
libsfgcc-4.8-dev-armhf-cross (4.8.4-
2ubuntul~14.04.1cross0.11.2)

libsfgccl-armhf-cross (1:4.8.4-2ubuntul~14.04.1cross0.11.2)
libsfgompl-armhf-cross (4.8.4-2ubuntul~14.04.1cross0.11.2)
linux-libc-dev-armel-cross (3.13.0-12.32crossl1.104)
linux-libc-dev-armhf-cross (3.13.0-12.32crossl1.104)

Commit Log for Wed Jul 20 19:01:01 2016

Installed the following packages:

gtt-4.8-arm-linux-gnueabihf (4.8.4-
2ubuntul~14.04.1cross0.11.2)
gt+t-4.8-multilib-arm-linux-gnueabihf (4.8.4-
2ubuntul~14.04.1cross0.11.2)

gt+-arm-linux-gnueabihf (4:4.8.2-1)
libsfstdc++-4.8-dev-armhf-cross (4.8.4-
2ubuntul~14.04.1cross0.11.2)

libsfstdct+6-armhf-cross (4.8.4-2ubuntul~14.04.1cross0.11.2)

libstdc++-4.8-dev-armhf-cross (4.8.4-
2ubuntul~14.04.1cross0.11.2)
libstdc++6-armhf-cross (4.8.4-2ubuntul~14.04.1cross0.11.2)

Commit Log for Thu Jul 21 15:18:09 2016

Installed the following packages:

gnome-system-monitor (3.8.2.1-2ubuntul)
libatkmm-1.6-1 (2.22.7-2ubuntul)
libcairomm-1.0-1 (1.10.0-1lubuntu3)
libglibmm-2.4-1c2a (2.39.93-0ubuntul)
libgtkmm-3.0-1 (3.10.1-Oubuntu2)
libpangomm-1.4-1 (2.34.0-1lubuntul)
libsigc++-2.0-0c2a (2.2.10-0.2ubuntu?2)

Commit Log for Thu Jul 28 18:18:54 2016

Installed the following packages:

guile-1.8 (1.8.8+1-8ubuntu3)
guile-1.8-1ibs (1.8.8+1-8ubuntu3)

Commit Log for Wed Aug 3 16:13:14 2016

Installed the following packages:

autoconf (2.69-6)
automake (1:1.14.1-2ubuntul)
autotools-dev (20130810.1)

Commit Log for Fri Aug 5 12:58:53 2016

Installed the following packages:

libltdl-dev (2.4.2-1.7ubuntul)
libtool (2.4.2-1.7ubuntul)

The following is then executed with the following settings and environment
Environment settings:

e ESDK_BUILDROOT=/home/username/epiphany-sdk
e ESDK_DESTDIR=/home/username/epiphany-sdk/esdk.2016.3.1/

Build settings:

e eSDK install directory: /home/username/epiphany-sdk/esdk.2016.3.1/
e eSDK prefix directory: /opt/adapteva/esdk.2016.3.1

e epiphany-libs host prefix: arm-linux-gnueabihf
e Build version: 2016.3.1
e Build from branch or tag: 2016.3

export EPIPHANY BUILD HOME=S$HOME/epiphany-sdk
cd $EPIPHANY BUILD HOME
sdk/build-epiphany-sdk.sh

Using this environment means that the building and running of programs on the Epiphany no
longer gets bottlenecked by the device, and instead, relies on the performance of the host
machine this is installed on. This makes testing much easier on the Epiphany.

DISCUSSION

When working with the Parallella Epiphany, | found that most of the documentation were
either out-of-date of incorrect in some cases, even when they were provided officially by the
company or third parties developing specifically for the device. The lack of popularity and
“well-knowness” of the hardware contributes to this phenomenon and that help and
assistance were hard to find scouring the web. Most of the tasks completed were done with
the guidance of the in-house Engineer and he mentioned the issues of binaries being out-of-
date as well as instructions provided incorrectly by the developers and that he had spent a
long time debugging to fix some of the problems.

The goal of the Epiphany was mainly to provide high performance at a low wattage. As people
already know, the Epiphany is best suited for performing parallel tasks, using the device the
same way as an Intel or AMD CPU would be a complete disaster. While the device excels at
some parallel tasks, if a processor that draws around the same amount of power performs
better, or even just as well, then the entire point of using the Epiphany is lost. Using the
COPRTHR SDK, performance was disappointing and this was because of the natural unfit of
the OpenCL framework with the Epiphany.

People ask that “What is it that is holding the Epiphany back from being the ‘new’
supercomputer?” and this is a valid question, if the device utilises such low wattage and
outputs a respectable amount of power, why is it not being used in popular fashion? There is
no clear answer to the question, as it turns out, the technology looks to be immature at this
stage and the Epiphany seems to only satisfy a certain niche. There are numerous problems
with the Parallella Epiphany and Adapteva must set out to fix them before mass adoption
takes place in the commercial area.

Programming the Epiphany requires the correct setup of environment. Any details done
incorrectly and the device will throw an error at you and most of the time it is not at all
obvious how to debugiit. In the times that | have met obstacles in the research and test phases,
| usually just try to do the entire setup from scratch, hoping that a user error was made during
my steps instead of a fundamental program problem. Sometimes, even accessing the wrong
partitions or memory segments, cause the Epiphany to freeze, and a manual reboot is
required. Since there is no GUI in the build | was using, it meant that pulling the power cord
and re-plugging was the only solution.

CONCLUSION

The project involved a brand-new computing hardware device developed by a small company
based in the USA. It focused on parallel computing and its advantages as well as its
disadvantages. The Parallella Epiphany has proven itself to be an extremely tricky device to
work with, from not having a GUI if choosing to use the latest features with the latest updates,
to incomplete documentation provided officially. The goal was to verify its ability stated by
the Epiphany manufacturer, Adapteva, and while for the most part, including the power usage,
the individual core performance, were certainly impressive, the advantages over other
embedded systems, | am still unable to be fully confident in determining if the Epiphany has
got the factor to beat every other system. In future work, running the Parallella in clusters
may be extremely interesting in figuring out the potential uses for the device as it could
potentially increase performance by a large scale.

REFERENCES

10.

Compucon.co.nz. (2009). Compucon Computers NZ - Quality Servers and Workstations -
Company Profile. [online] Available at: http://www.compucon.co.nz/content/view/27/242/.

Adapteva, (2016). Epiphany Datasheet [online] Available at:
http://adapteva.com/docs/e16g301 datasheet.pdf.

Graham E Fagg. (2006). CS594 Lecture Slides
http://www.netlib.org/utk/people/JackDongarra/WEB-PAGES/SPRING-2006/Lectoz-
extra.pdf

Brown Deer Technology. (2013). CO-PRocessing THReads (COPRTHR) Software.
http://www.browndeertechnology.com/coprthr.htm

Brown Deer Technology, (2013). COPRTHR API Reference. [online] Available at:
http://www.browndeertechnology.com/docs/coprthr_api_ref.pdf.

Suzannejmatthews.github.io. (2016). Technical Musings : Parallella Setup Tutorial. [online]
Available at: http://suzannejmatthews.github.io/2015/05/29/setting-up-your-parallella/.

Adapteva, (2011). Epiphany Architecture Reference. [online] Available at:
http://www.adapteva.com/docs/epiphany arch ref.pdf.

Parallella, Parallella Examples, (2016). https://github.com/parallella/parallella-

examples/tree/master/para-para

Jan-Willem Buurlage, Tom Bannink, Abe Wits, (25 Aug 2016). Bulk-synchronous pseudo-
streaming algorithms for many core accelerators.

https://arxiv.org/pdf/1608.07200v1.pdf

CODUIN, (2016). Benchmarking the Parallella.
http://blog.codu.in/parallella/epiphany/ebsp/2016/03/02/benchmarking-the-parallella.html

http://www.compucon.co.nz/content/view/27/242/
http://adapteva.com/docs/e16g301_datasheet.pdf
http://www.netlib.org/utk/people/JackDongarra/WEB-PAGES/SPRING-2006/Lect07-extra.pdf
http://www.netlib.org/utk/people/JackDongarra/WEB-PAGES/SPRING-2006/Lect07-extra.pdf
http://www.browndeertechnology.com/coprthr.htm
http://www.browndeertechnology.com/docs/coprthr_api_ref.pdf
http://suzannejmatthews.github.io/2015/05/29/setting-up-your-parallella/
http://www.adapteva.com/docs/epiphany_arch_ref.pdf
https://github.com/parallella/parallella-examples/tree/master/para-para
https://github.com/parallella/parallella-examples/tree/master/para-para
https://arxiv.org/pdf/1608.07200v1.pdf
http://blog.codu.in/parallella/epiphany/ebsp/2016/03/02/benchmarking-the-parallella.html

